Object Tracking with an Evolutionary Particle Filter Based on Self-Adaptive Multi-Features Fusion
نویسنده
چکیده
Particle filter algorithms are widely used for object tracking in video sequences, but the standard particle filter algorithm cannot solve the validity of particles ideally. To solve the problems of particle degeneration and sample impoverishment in a particle filter tracking algorithm, an improved object tracking algorithm is proposed, which combines a multi‐feature fusion method and a genetic evolution mechanism. The algorithm dynamically computes the feature’s fusion weight by the discriminability of each vision feature and then constructs the important density function based on selecting a feature’s fusion method adaptively. Moreover, a self‐adaptive genetic evolutionary mechanism is introduced into the particle resampling process and makes the particle become an agent with the ability of dynamic self‐adaption. With self‐adaptive crossover and mutation operators, the evolution system produces a large number of new particles, which can better approximate the true state of the tracking object. The experimental results show that the proposed object tracking algorithm surpasses the conventional particle filter on both robustness and accuracy, even though the tracking object is very challenging regarding illumination variation, structural deformation, the interference of similar targets and occlusion.
منابع مشابه
A New Robust Object Tracking Algorithm Based on Multi-Feature Fusion
The object tracking by single feature often leads to poor robustness. In this paper, an object tracking algorithm based on multi-features fusion is presented. An adaptive method of choosing object color histogram is presented and the histogram is background weighted in order to get an accurate color model of the object. At meanwhile, then spatiograms feature is applied to obtain spatial layout ...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملRobust video object tracking using particle filter with likelihood based feature fusion and adaptive template updating
A robust algorithm solution is proposed for tracking an object in complex video scenes. In this solution, the bootstrap particle filter (PF) is initialized by an object detector, which models the time-evolving background of the video signal by an adaptive Gaussian mixture. The motion of the object is expressed by a Markov model, which defines the state transition prior. The color and texture fe...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کامل